Methods Combination and ML-based Re-ranking of Multiple Hypothesis for Question-Answering Systems
نویسندگان
چکیده
Question answering systems answer correctly to different questions because they are based on different strategies. In order to increase the number of questions which can be answered by a single process, we propose solutions to combine two question answering systems, QAVAL and RITEL. QAVAL proceeds by selecting short passages, annotates them by question terms, and then extracts from them answers which are ordered by a machine learning validation process. RITEL develops a multi-level analysis of questions and documents. Answers are extracted and ordered according to two strategies: by exploiting the redundancy of candidates and a Bayesian model. In order to merge the system results, we developed different methods either by merging passages before answer ordering, or by merging end-results. The fusion of endresults is realized by voting, merging, and by a machine learning process on answer characteristics, which lead to an improvement of the best system results of 19 %.
منابع مشابه
Minimum Bayes Risk based Answer Re-ranking for Question Answering
This paper presents two minimum Bayes risk (MBR) based Answer Re-ranking (MBRAR) approaches for the question answering (QA) task. The first approach re-ranks single QA system’s outputs by using a traditional MBR model, by measuring correlations between answer candidates; while the second approach reranks the combined outputs of multiple QA systems with heterogenous answer extraction components ...
متن کاملدستهبندی پرسشها با استفاده از ترکیب دستهبندها
Question answering systems are produced and developed to provide exact answers to the question posted in natural language. One of the most important parts of question answering systems is question classification. The purpose of question classification is predicting the kind of answer needed for the question in natural language. The literature works can be categorized as rule-based and learning...
متن کاملOptimizing question answering systems by Accelerated Particle Swarm Optimization (APSO)
One of the most important research areas in natural language processing is Question Answering Systems (QASs). Existing search engines, with Google at the top, have many remarkable capabilities. But there is a basic limitation (search engines do not have deduction capability), a capability which a QAS is expected to have. In this perspective, a search engine may be viewed as a semi-mechanized QA...
متن کاملEvidence Aggregation for Answer Re-Ranking in Open-Domain Question Answering
A popular recent approach to answering open-domain questions is to first search for question-related passages and then apply reading comprehension models to extract answers. Existing methods usually extract answers from single passages independently. But some questions require a combination of evidence from across different sources to answer correctly. In this paper, we propose two models which...
متن کاملA New Statistical Model for Evaluation Interactive Question Answering Systems Using Regression
The development of computer systems and extensive use of information technology in the everyday life of people have just made it more and more important for them to make quick access to information that has received great importance. Increasing the volume of information makes it difficult to manage or control. Thus, some instruments need to be provided to use this information. The QA system is ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2012